This weekly roundup thread is intended for all culture war posts. 'Culture war' is vaguely defined, but it basically means controversial issues that fall along set tribal lines. Arguments over culture war issues generate a lot of heat and little light, and few deeply entrenched people ever change their minds. This thread is for voicing opinions and analyzing the state of the discussion while trying to optimize for light over heat.
Optimistically, we think that engaging with people you disagree with is worth your time, and so is being nice! Pessimistically, there are many dynamics that can lead discussions on Culture War topics to become unproductive. There's a human tendency to divide along tribal lines, praising your ingroup and vilifying your outgroup - and if you think you find it easy to criticize your ingroup, then it may be that your outgroup is not who you think it is. Extremists with opposing positions can feed off each other, highlighting each other's worst points to justify their own angry rhetoric, which becomes in turn a new example of bad behavior for the other side to highlight.
We would like to avoid these negative dynamics. Accordingly, we ask that you do not use this thread for waging the Culture War. Examples of waging the Culture War:
-
Shaming.
-
Attempting to 'build consensus' or enforce ideological conformity.
-
Making sweeping generalizations to vilify a group you dislike.
-
Recruiting for a cause.
-
Posting links that could be summarized as 'Boo outgroup!' Basically, if your content is 'Can you believe what Those People did this week?' then you should either refrain from posting, or do some very patient work to contextualize and/or steel-man the relevant viewpoint.
In general, you should argue to understand, not to win. This thread is not territory to be claimed by one group or another; indeed, the aim is to have many different viewpoints represented here. Thus, we also ask that you follow some guidelines:
-
Speak plainly. Avoid sarcasm and mockery. When disagreeing with someone, state your objections explicitly.
-
Be as precise and charitable as you can. Don't paraphrase unflatteringly.
-
Don't imply that someone said something they did not say, even if you think it follows from what they said.
-
Write like everyone is reading and you want them to be included in the discussion.
On an ad hoc basis, the mods will try to compile a list of the best posts/comments from the previous week, posted in Quality Contribution threads and archived at /r/TheThread. You may nominate a comment for this list by clicking on 'report' at the bottom of the post and typing 'Actually a quality contribution' as the report reason.
Jump in the discussion.
No email address required.
Notes -
AI has now understanding. It is like letting a person who grew up in a village in the amazon observe a nucit lear power plant operator push buttons and then giving the villagers the controls. They might be able to mimic the behaviour but there is no understanding. AI doesn't understand and it doesn't reason, Just guessing the next chess move by observing what elite players have played is one thing. Interacting with the real world without any actual understanding will never work. There is a reason why dentists learn chemistry, engineers learn math and why education has hands on labs. Without real world experience and intuition one can never become proficient.
Actual understanding and context are AI problems that haven't really progressed at all and until they do AI is going to be stuck in the realm of tools used in specific circumstances.
Username checks out :)
The death of GOFAI is a tragedy, however humans also mostly learn by mimetism however they build a model of reality based on mimetics insights and that, a neural network cannot reliably.
However, while I still believe chatgpt is a data illusion, for the first time in my life I fail to explain the illusion as chatgpt is able to do things reliably that goes far beyong an ability to flexibly scrap existing datasets.
The other tragedy is that neural networks based on precise emulation of the architecture of an animal brain are completely non-funded and conversely the funding on retro-engineering of simple animal brains is of close to zero. We are very close to a full observability and mapping of the c-elegans brain, however nobodys working on the remaining gaps (e.g. GABA neurons). As I have disocovered in my life, almost all key blockers to scientific disruption share a similar issue: nobody's working on them. Nobody's funding them.
Hence when people forecast AGI progress on metaculus, they systematically fail to understand that the forecast is not a number of pending years but the infinity of time.
More options
Context Copy link
But that's the thing, it isn't capable of accomplishing all sorts of goals as seen in this thread, because it lacks understanding. It will need that understanding to ever get to a point where it becomes an X-risk.
More options
Context Copy link
This is an appeal to ignorance.
Understanding something is having a causal model of it.
It allows to analyze such system and reliably predicts it and its consequences.
A system with a reliable understanding should be able to output argumentative text/syllogisms showing said understanding, free of logical fallacies and with source to the truth values of the premises.
To mysticize what understanding is really shows once again the truism that epistemology should be taught in schools.
At the end of the day, the result is what matter indeed, but without understanding a system is non-reliable and cannot be trusted for many serious needs.
That is a geat comment, I will answer it properly when I get the time.
More options
Context Copy link
More options
Context Copy link
Observe the nuclear power plant operator long enough and you can plausibly gain enough understanding to run the power plant while never figuring out what fission is.
No, I don't think so, there are likely way too many edge cases that all require genuine understanding to solve.
More options
Context Copy link
Until you run in a situation you never encountered before as the world is highly variadic and then the system pathetically fail.
Yes, which is a problem solved by more training data.
That is not a solid solution to any dataset changing in real time. More data can only do so much, as a metaphor, see the limits of AOT versus JIT for compilers.
More options
Context Copy link
More options
Context Copy link
More options
Context Copy link
More options
Context Copy link
More options
Context Copy link