Do you have a dumb question that you're kind of embarrassed to ask in the main thread? Is there something you're just not sure about?
This is your opportunity to ask questions. No question too simple or too silly.
Culture war topics are accepted, and proposals for a better intro post are appreciated.
Jump in the discussion.
No email address required.
Notes -
So, what are you reading? (Another thread with this question was in here in the Fun Thread)
I'm still on Gray's Postmodern War. So far it's an interesting blend of history, analysis of the ideas behind military programs, and meditations on the nuances of war. Very quotable.
Michael Allen Gillespie - The Theological Origins of Modernity. The argument is that there is far less of a break between Medieval theology and modern philosophy than we think, and that modernity owes its origins to the Scholastic realism vs Nominalism break that occupied the minds of the 13th century. Or as Gillespie puts it:
What are Scholastic Realism and Nominalism?
One interesting thing mentioned is that Ockham's Razor owes its origin to this debate:
Nominalism vs realism sounds like ... a strange philosophical debate. "Universals are real, particulars aren't" vs "particulars are real, universals aren't" - what does this even mean? It reminds one of plato, and the right response is - https://www.unqualified-reservations.org/archive/stove/
Well a lot according to the book. Has God created a rationally ordered world (realism) or does it all exist at his whim (nominalism)? Given a rational order can we deduce the laws of nature logically or can we only gain knowledge about what God has created through observation of his seemingly arbitrary choices? Is each human simply an imperfect expression of the universal man imbued with the same telos, or is there some divine significance to the expression of individual will?
Secularise these concepts and you derive a lot of the same ideas we believe in today.
More options
Context Copy link
More options
Context Copy link
More options
Context Copy link
I'm reading Cathy O'Neill's Weapons of Math Destruction. It has been on my TBR pile for... too many years, now, which makes some of her case studies particularly interesting, in retrospect. I'm a little over halfway through, however, and so far she seems to not appreciate the difference between these two positions:
Automated, opaque data aggregation and processing is, by its nature, damaging to something important (e.g. rights, economies, society, mental health, whatever)
Automated, opaque data aggregation and processing should be used only to advance my political goals
It's not a bad book, exactly, but I'm concerned that by the time I finish reading it, I will just feel annoyed that it came so highly recommended. A lot of what she says seems basically right, but she essentially telegraphs the eventual capture of so-called "AI alignment" by progressives ideologues. Her hope does not appear (as, I think, advertised) to understand how the application of algorithms to human existence might be objectionable per se, but to find a way to make sure that algorithms apply to human existence only in ways that progressives like.
But in one sense O'Neill accomplished something interesting, at least: she successfully, if inadvertently, became the trendsetter for today. With art generators in the West being specially trained to not produce nudity or violence, while art generators in China are trained to not produce pictures of the 1989 Tiananmen Square Massacre, "AI aligment" "experts" the world over are chattering about how we will avoid building bias into our AI tools by, apparently... building the right bias into our AI tools. In so doing, they are apparently--it so far appears--channeling O'Neill.
Yeah, I recall being pretty disappointed in the book when I read it a few years ago, though I don’t recall why. I seem to recall her making a lot of dubious assumptions
More options
Context Copy link
tl;dr: progressivism-related arguments generally fallacious, but not exactly untreaded ground here - general anti-algorithm arguments certainly demonstrate 'algorithms can be components of bad things sometimes', but fail to put algorithms as a direct and only cause, or connect them to much large-scale harm. There were some interesting bits that hadn't occurred to me, like "for-profit colleges are significantly driven by generous student loans", but none of them had much to do with algorithms.
From the wiki article for the book:
All of the 'systemic biases mean those who are worse off are made even worse off', and a 'vicious spiral (cycle?)', arguments are inaccurate (in the current year) for two reasons - their effects just aren't large enough, and they're made up for by compensatory progressive programs. The loan example's multiple 'if's each correspond to specific conditions - plenty of minorities live in not-disproportionately-minority zip codes, even given said algorithm some of the ones in the zip code will get loans, there are many local colleges that are incredibly cheap, there are plenty of self-study resources available, etc. And, of course, there are loan programs for poor people and affirmative action. So, even if that's somewhat true, you'd expect - if that was the only effect - incomes to even out over several generations - and, for some ethnic minorities, it does.
On the specific topic of 'automated, opaque data aggregation' - I guess i'll skim the book a bit ... I found the epub on libgen.is, then, wanting a more convenient experience than the native epub reader, searched hn.algolia.com for 'epub read' (the first google result was packed with ads and a premium subscription) and picked "https://app.lotareader.com" for no particular reason
reading a few pages, i'm reminded of why I don't read popular books that much. "weapons of math destruction" is an annoying, unhelpful term, and the book generally seems to be broad gestures towards 'algorithms bad' as opposed to coherently explaining why they are. Many complaints, but just a few:
In general there are a lot of extraneous sentences that don't really add anything - like this paragraph "Now, if they incorporated the cost of education into the formula, strange things might happen to the results. Cheap universities could barge into the excellence hierarchy. This could create surprises and sow doubts. The public might receive the U.S. News rankings as something less than the word of God. It was much safer to start with the venerable champions on top. Of course they cost a lot. But maybe that was the price of excellence". Half the clauses here are entirely useless, and the other half are just smugly restating her point. "as something less than the word of God."? really?
Again, if you have a feedback loop that, say, increases risk by 5% - x * (1.05) is 1.05x. The 'vicious cycle' means that that .05 gets gets another 1.05 modifier added to it, so we get ... x + (.05) * (1.05)x. The series, sum 0 to inf of .05*n, converges to 1 / (1 - .05) ~= 1.0526. And when you combine 'in part', 'likely', 'more', 'raises the likelihood', 5% seems high! (the math is entirely tangential, "it should be obvious", i guess)
But this is just stated, no evidence is provided...
The chapter on online advertising spends a lot of time outlining non-targeted-ad, human-driven recruiting methods for for-profit universities that are, afaict, just as 'awful' as the target ad-driven one. So, again - what exactly does the algorithm add here?
Also strange is the claim that making a model transparent improves it. Not super relevant, but the weights for stable diffusion and OPT175 are just ... right there, and nobody is really sure how they work. (It's plausible that stable diffusion and GPT are still 'relatively simple' and we don't understand them just because they're so big and there's a lot of slightly complex 'circuits' or something, but that doesn't mean we're more able to understand them!) She seems to just assume transparency means there will be awesome independent journalists inspecting the model and demanding social change to fix it or something. Especially bizzare is a claim that the 'opacity' of college 'admissions models' leaves applicants/parents "in the dark" but "creates a big business for consultants". A transparent algorithm wouldn't reduce the number of consultants, it's not like each rich parent would manually interpret regression coefficients and design their kid a plan instead of paying for a program. And it just claims 'admissions models are derived from the US news model and each is a WMD'. I guess this is supposed to add to the sense that 'wmd = bad = everywhere', but wouldn't admissions be tough in any case? How would a more holistic admissions model make parents compete less?
I'm not sure "the concept of a safety school is now largely extinct", as claimed, and the 'american college USNews' chapter seemed to just say that US News rankings exist, point to people gaming them and a ton of potential consequences, but never really connected the ranking system to any specific college issues in a coherent way.
That's already way too long and ranty, but the entire book read like that.
Other mostly-unrelated observations:
I still don't get the 'all immigrants must be stopped bc they dont contribute to america' thing, at all, in large part because of a ton of observations like this.
Some of people I know would claim, after reading this, "wow, our elite are so stupid, but they believe stuff like this". But it shows the opposite - the author is clearly very smart - algebraic geometry, math professor, quant at hedge fund!
More options
Context Copy link
More options
Context Copy link
More options
Context Copy link