site banner

The scientific method rests on faith in God and Man.

The so-called "scientific method" is, I think, rather poorly understood. For example, let us consider one of the best-known laws of nature, often simply referred to as the Law of Gravity:

Newton's Law of Universal Gravitation: Every object in the universe attracts every other object toward it with a force proportional to the product of their masses, divided by the square of the distance between their centers of mass.

Now here is a series of questions for you, which I often ask audiences when I give lectures on the philosophy of science:

  1. Do you believe Newton's Law of Universal Gravitation is true?
  2. If so, how sure are you that it is true?
  3. Why do you believe it, with that degree of certainty?

The most common answers to these questions are "yes", "very sure", and "because it has been extensively experimentally verified." Those answers sound reasonable to any child of the Enlightenment -- but I submit, on the contrary, that this set of answers has no objective basis whatsoever. To begin with, let us ask, how many confirming experiments do you think would have been done, to qualify as "extensive experimental verification." I would ask that you, the reader, actually pick a number as a rough, round guess.

Whatever number N you picked, I now challenge you state the rule of inference that allows you to conclude, from N uniform observations, that a given effect is always about from a given alleged cause. If you dust off your stats book and thumb through it, you will find no such rule of inference rule there. What you will find are principles that allow you to conclude from a certain number N of observations that with confidence c, the proportion of positive cases is z, where c < 1 and z < 1. But there is no finite number of observations that would justify, with any nonzero confidence, that any law held universally, without exception (that is, z can never be 1 for any finite number of observations, no matter how small the desired confidence c is, unless c = 0). . And isn't that exactly what laws of nature are supposed to do? For Pete's sake it is called the law of universal gravitation, and it begins with the universal quantifier every (both of which may have seemed pretty innocuous up until now).

Let me repeat myself for clarity: I am not saying that there is no statistical law that would allow you to conclude the law with absolute certainty; absolute certainty is not even on the table. I am saying that there is no statistical law that would justify belief in the law of universal gravitation with even one tenth of one percent of one percent confidence, based on any finite number of observations. My point is that the laws of the physical sciences -- laws like the Ideal gas laws, the laws of gravity, Ohm's law, etc. -- are not based on statistical reasoning and could never be based on statistical reasoning, if they are supposed, with any confidence whatsoever, to hold universally.

So, if the scientific method is not based on the laws of statistics, what is it based on? In fact it is based on the

Principle of Abductive Inference: Given general principle as a hypothesis, if we have tried to experimentally disprove the hypothesis, with no disconfirming experiments, then we may infer that it is likely to be true -- with confidence justified by the ingenuity and diligence that has been exercised in attempting to disprove it.

In layman's terms, if we have tried to find and/or manufacture counterexamples to a hypothesis, extensively and cleverly, and found none, then we should be surprised if we then find a counterexample by accident. That is the essence of the scientific method that underpins most of the corpus of the physical sciences. Note that it is not statistical in nature. The methods of statistics are very different, in that they rest on theorems that justify confidence in those methods, under assumptions corresponding to the premises of the theorems. There is no such theorem for the Principle of Abductive Inference -- nor will there ever be, because, in fact, for reasons I will explain below, it is a miracle that the scientific method works (if it works).

Why would it take a miracle for the scientific method to work? Remember that the confidence with which we are entitled to infer a natural law is a function of the capability and diligence we have exercised in trying to disprove it. Thus, to conclude a general law with some moderate degree of confidence (say, 75%), we must have done due diligence in trying to disprove it, to the degree necessary to justify that level confidence, given the complexity of the system under study. But what in the world entitles us to think that the source code of the universe is so neat and simple, and its human denizens so smart, that we are capable of the diligence that is due?

For an illuminating analogy, consider that software testing is a process of experimentation that is closely analogous to scientific experimentation. In the case of software testing, the hypothesis being tested -- the general law that we are attempting to disconfirm -- is that a given program satisfies its specification for all inputs. Now do you suppose that we could effectively debug Microsoft Office, or gain justified confidence in its correctness with respect to on item of its specification, by letting a weasel crawl around on the keyboard while the software is running, and observing the results? Of course not: the program is far too complex, its behavior too nuanced, and the weasel too dimwitted (no offense to weasels) for that. Now, do you expect the source code of the Universe itself to be simpler and friendlier to the human brain than the source code of MS Office is to the brain of a weasel? That would be a miraculous thing to expect, for the following reason: a priori, if the complexity of that source code could be arbitrarily large. It could be a googleplex lines of spaghetti code -- and that would be a infinitesimally small level of complexity, given the realm of possible complexities -- namely the right-hand side of the number line.

In this light, if the human brain is better equipped to discover the laws of nature than a weasel is to confidently establish the correctness an item in the spec of MS Office, it would be a stunning coincidence. That is looking at it from the side of the a priori expected complexity of the problem, compared to any finite being's ability to solve it. But there is another side to look from, which is the side of the distribution of intelligence levels of the potential problem-solvers themselves. Obviously, a paramecium, for example, is not equipped to discover the laws of physics. Nor is an octopus, nor a turtle, nor a panther, nor an orangutan. In the spectrum of natural intelligences we know of, it just so happens that there is exactly one kind of creature that just barely has the capacity to uncover the laws of nature. It is as if some cosmic Dungeon Master was optimizing the problem from both sides, by making the source code of the universe just simple enough that the smartest beings within it (that we know of) were just barely capable of solving the puzzle. That is just the goldilocks situation that good DM's try to achieve with their puzzles: not so hard they can't be solved, not so easy that the players can't take pride in solving them

There is a salient counterargument I must respond to. It might be argued that, while it is a priori unlikely that any finite being would be capable of profitably employing the scientific method in a randomly constructed universe, it might be claimed that in hindsight of the scientific method having worked for us in this particular universe, we are now entitled, a posteriori, to embrace the Principle of Abductive Inference as a reliable method. My response is that we have no objective reason whatsoever to believe the scientific method has worked in hindsight -- at least not for the purpose of discovering universal laws of nature! I will grant that we have had pretty good luck with science-based engineering in the tiny little spec of the universe observable to us. I will even grant that this justifies the continued use of engineering for practical purposes with relative confidence -- under the laws of statistics, so long as, say, one anomaly per hundred thousand hours of use is an acceptable risk. But this gives no objective reason whatsoever (again under the laws of statistics) to believe that any of the alleged "laws of nature" we talk about is actually a universal law. That is to say, if you believe, with even one percent confidence, that we ever have, or ever will, uncover a single line of the source code of the universe -- a single law of Nature that holds without exception -- then you, my friend, believe in miracles. There is no reason to expect the scientific method to work, and good reason to expect it not to work -- unless human mind was designed to be able to uncover and understand the laws of nature, by Someone who knew exactly how complex they are.

-4
Jump in the discussion.

No email address required.

I get that when the sample set is unbounded/the known is unbound we can not define a hard number to some confidence of a hypothesis about that set, but I don't see how the principle of abductive inference isn't a statistical argument. Isn't it just some kind of logic similar to a Bayesian update? You have some hypothesis, every time time you fail to find a counter example that is evidence for the hypothesis. Isn't it just as flawed when dealing with a potentially infinite number of crows?

Also, isn't a fundamental difference between crows, and physics, is that we expect there to be universal laws? That is, we have no reason to believe there is a universal law governing the color of crows, but we do believe there are for how objects behave, right?

I take for granted that the universe is governed by unchanging laws

Next, I would suggest that the mathematical foundations of physics give reason to believe in universal laws. That is the laws of physics are deeply related and not as arbitrary as I think you imagine.

Its kind of like if you said "All Euclidean triangles have an internal angle of 180 degrees". And I said, "Well I can imagine a triangle with 181 degrees." I might think that I can imagine a Euclidean triangle with 181 degrees, but really I can't.

If we were pulling Euclidean polygons out of a box, I think you would be justified in saying "all triangles in the box have an internal angle of 180 degrees". This would have started out as an empirical observation, we would have pulled out polygon after polygon out of the box, counted the sides, and measured the angles, and noticed that the ones with 3 sides always had 180 degrees. However eventually someone would have discovered the mathematics that justifies saying all triangles have 180 degrees.

However, at the same time, it could be true that some of what we thought were triangles, weren't. Maybe they had a microscopic fourth side.

If we are pulling triangles out of the box, then they all have 180 degrees, and we will never see one that doesn't. But maybe they aren't triangles. And it turns out that the laws of physics are very, very much like this.

I don't see how the principle of abductive inference isn't a statistical argument.

Good question. To answer it, we have to have a concrete picture of what statistical arguments really are, and not just a vague intuition that says "make observations and allow them to change your beliefs" -- see also this post :https://www.themotte.org/post/907/the-scientific-method-rests-on-faith/195677?context=8#context).

Statistical arguments are based, first and foremost, on random samples, and this is a premise of the theorems that justify statistical methods. Abductive inference is not based on random samples. On the contrary, statistical in based on decidedly nonrandom samples chosen in a deliberate search for counterexamples. In a random sample, you must pick with your eyes closed or the test is no good, and sample size is crucial; in abduction, you must cherry pick as the devil's advocate, trying to disprove the hypothesis, or the test is no good. This means you must be an effective enough advocate to have a good chance of finding counterexamples if they actually exist -- which is why abductive inference is not objective evidence, but rests on an article of faith in the capabilities of reasoner as an effective advocate to disprove the hypothesis in case it is false.

This seems like mostly a discussion of definitions. To me, what justifies the claim that failing to find a counter example makes the hypothesis more likely is statistics.

Regardless, I don't see how abductive inference solves the problem, if you claim that the laws of physics are crows. Why does abductive inference let me say "all crows are black" when I try hard to find non-black crows, what is the logic?

Anyways, the laws of physics are decidedly not crows. We can generalize about them because they can be mapped to mathematical constructs, crows can not. That is, we can make a universal law about electrons because what an electron is, is fixed by the mathematics of the theory. Now, we could be wrong about the theory, but if we are right then we can say things like "every electron has a charge of E", not because we looked and saw only electrons with charge E, but because the math says it is.

To me, what justifies the claim that failing to find a counter example makes the hypothesis more likely is statistics.

If you point me to a statistical method that can give objective evidence for nonzero confidence in a universal generalization (such as Newton's Law of Gravity), you will have taught me the most interesting thing I have learned in a month.

Why does abductive inference let me say "all crows are black" when I try hard to find non-black crows, what is the logic?

Well, that is the trillion-dollar question. The fact is that is an inference rule often used in the physical sciences -- and it is the only inference rule that can give us any nonzero confidence in a universal generalization (such as a universal natural law, such the laws of thermodynamics or electromagnetism). Statistical methods cannot give objective evidence for such laws.

So either (1) abductive inference is only good for generating useful fictions (with zero reason to ever believe they are anything but fictions), or (2) it can sometimes be used to yield nonzero confidence in certain universal natural laws. If you choose door number 1, so be it. If you choose door number 2, and you ask me where the logic is, I will tell you that there isn't any unless we are blessed with minds so powerful, and a universe so simple, that if counterexamples to the law existed, we would be tolerably likely to find them. So, unless the corpus of physics is a useful fiction, with no reason to believe anything in it is anything but a fiction, you tell me: where's the logic?

My response would be what I've been driving at, regarding math.

Say we are pulling (Euclidean) polygons out of a box of infinite polygons. We observe that every time we pull out a three sided polygon, the polygon has an internal angel of 180 degrees. I agree with you that no number of observations of three sided polygons can let us conclude "every three sided polygon in the box has an internal angle of 180 degrees".

However, our observations can do is drive us to the mathematics of polygons, and what we can do is use math to show that if a polygon has three sides, then it's internal angle must be 180 degrees. This then lets us conclude that every three sided polygon in the box, has an internal angle of 180 degrees.

Consider electric charge. I agree that no number of observations of quantized electric charge could prove that electric charge is quantized everywhere. But if we are right that the gauge group of the electromagnetic field is U(1), then we can say that every electric charge is quantized.