site banner

Culture War Roundup for the week of September 19, 2022

This weekly roundup thread is intended for all culture war posts. 'Culture war' is vaguely defined, but it basically means controversial issues that fall along set tribal lines. Arguments over culture war issues generate a lot of heat and little light, and few deeply entrenched people ever change their minds. This thread is for voicing opinions and analyzing the state of the discussion while trying to optimize for light over heat.

Optimistically, we think that engaging with people you disagree with is worth your time, and so is being nice! Pessimistically, there are many dynamics that can lead discussions on Culture War topics to become unproductive. There's a human tendency to divide along tribal lines, praising your ingroup and vilifying your outgroup - and if you think you find it easy to criticize your ingroup, then it may be that your outgroup is not who you think it is. Extremists with opposing positions can feed off each other, highlighting each other's worst points to justify their own angry rhetoric, which becomes in turn a new example of bad behavior for the other side to highlight.

We would like to avoid these negative dynamics. Accordingly, we ask that you do not use this thread for waging the Culture War. Examples of waging the Culture War:

  • Shaming.

  • Attempting to 'build consensus' or enforce ideological conformity.

  • Making sweeping generalizations to vilify a group you dislike.

  • Recruiting for a cause.

  • Posting links that could be summarized as 'Boo outgroup!' Basically, if your content is 'Can you believe what Those People did this week?' then you should either refrain from posting, or do some very patient work to contextualize and/or steel-man the relevant viewpoint.

In general, you should argue to understand, not to win. This thread is not territory to be claimed by one group or another; indeed, the aim is to have many different viewpoints represented here. Thus, we also ask that you follow some guidelines:

  • Speak plainly. Avoid sarcasm and mockery. When disagreeing with someone, state your objections explicitly.

  • Be as precise and charitable as you can. Don't paraphrase unflatteringly.

  • Don't imply that someone said something they did not say, even if you think it follows from what they said.

  • Write like everyone is reading and you want them to be included in the discussion.

On an ad hoc basis, the mods will try to compile a list of the best posts/comments from the previous week, posted in Quality Contribution threads and archived at /r/TheThread. You may nominate a comment for this list by clicking on 'report' at the bottom of the post and typing 'Actually a quality contribution' as the report reason.

33
Jump in the discussion.

No email address required.

Anybody smart enough to build bleeding-edge AI systems is smart enough to understand why if you try to predict the likelihood of a criminal repeating a crime, it will always say that black people are more likely to repeat (it's because black people are more likely to repeat).

An alternative explanation is that doublethink required to simultaneously believe in the party line and in the reality required to do your job doesn't actually work very well and tends to devolve into believing in the party line only. Imagine that you're a bright young guy working on a Google's image classifier. To generate the thought that the classifier might confuse black people for apes so you must specifically check that it doesn't, you must believe that black people tend to have certain ape-like facial features. That's a very dangerous thing to believe, your woke peers would be very unamused if you just blurt it out or inexpertly wink-wink nudge-nudge your way to suggesting that you need to check for that etc. If you have a lot of wrongfact beliefs you have to watch your every word to avoid committing a social suicide. Accidentally releasing a classifier that does in fact mistake black people for apes on the other hand is relatively safe: it's not your personal fault and who could have thought and it's probably bias in the training data anyway. So in a highly ideologized environment people just naturally fail at their jobs instead of trying to maintain a bag of forbidden beliefs.

This example doesn't work - black people are dark, apes have dark fur, image classifiers often pick up on easy-to-detect features like color.

More generally I'd question how important the party line/reality conflict is - many genuine smart people believe in wokeness and will probably continue to indefinitely. E.g. OpenAI is clearly woke yet manages to put out a great product.