site banner

How UN manipulates the Gender Development Index

I think that UN manipulating it's own index is not culture wars even if the index is related to gender. Let me know if I am wrong.

Human development

The Gender Development Index (GDI), along with its more famous sibling Human Development Index (HDI) is a an index published annually by UN's agency, the United Nations Development Programme (UNDP). Whether an index is manipulated or not can be judged only against a precise definition of what the index claims to be measuring. So how do you measure human development? Whatever you do, you will never capture all nuances of the real world - you will have to simplify. The UNDP puts it this way:

The Human Development Index (HDI) was created to emphasize that people and their capabilities should be the ultimate criteria for assessing the development of a country, not economic growth alone.

So the UNDP defines the Human Development Index as a geometric mean of three dimensions represented by four indices:

Dimension Index
Long and healthy life Life expectancy at birth (years)
Knowledge Expected years of schooling (years)
Mean years of schooling (years)
Decent standard of living Gross National Income (GNI) per capita (2017 PPP$)

Source: https://hdr.undp.org/data-center/human-development-index#/indicies/HDI

Gender Development

So far so good. Next, on it's website the Gender Development Index (GDI) is defined like this:

GDI measures gender inequalities in achievement in three basic dimensions of human development: health, measured by female and male life expectancy at birth; education, measured by female and male expected years of schooling for children and female and male mean years of schooling for adults ages 25 years and older; and command over economic resources, measured by female and male estimated earned income.

Source: https://hdr.undp.org/gender-development-index#/indicies/GDI

While in the actual report HDI it is simply defined as a ratio of female to male HDI values:

Definitions - Gender Development Index: Ratio of female to male HDI values.

Source: https://hdr.undp.org/system/files/documents/global-report-document/hdr2021-22pdf_1.pdf

Let's look, for instance, at the Gender Development Index of United Kingdom. The value 0.987 means that despite longer life and more education, in UK, females are less developed than males.

Dimension Index Female value Male value
Long and healthy life Life expectancy at birth (years) 82.2 78.7
Knowledge Expected years of schooling (years) 17.8 16.8
Mean years of schooling (years) 13.4 13.4
Decent standard of living Gross National Income (GNI) per capita (2017 PPP$) 37,374 53,265

Source: https://hdr.undp.org/system/files/documents/global-report-document/hdr2021-22pdf_1.pdf

Wait, what?? What does it mean that females in UK have command over economic resources of post Soviet Estonia (GNI Estonia=38,048) while males in UK have command over economic resources of EU leader Germany (GNI Germany=54,534)?

The manipulation

The UNDP calculates separate command over economic resources for females and males, as a product of the actual Gross National Income (GNI) and two indices: female and male shares of the economically active population (the non-adjusted employment gap) and the ratio of the female to male wage in all sectors (the non-adjusted wage gap).

The UNDP provides this simple example about Mauritania:

Gross National Income per capita of Mauritania (2017 PPP $) = 5,075

Indicator Female value Male value
Wage ratio (female/male) 0.8 0.8
Share of economically active population 0.307 0.693
Share of population 0.51016 0.48984
Gross national income per capita (2017 PPP $) 2,604 7,650

According to this index, males in Mauritania enjoy the command over economic resources of Viet Nam (GNI Viet Nam=7,867) while females in Mauritania suffer the command over economic resources of Haiti (GNI Haiti=2,847).

Let's be honest here: this is total bullshit. There are two reasons why you cannot use raw employment gap and raw wage gap for calculating the command over economic resources:

Argument 1

Bread winners share income with their families. This is a no brainer. All over the world, men are expected to fulfil their gender role as a bread winer. This does not mean that they keep the pay check for themselves while their wives and children starve to death. Imagine this scenario: a poor father from India travels to Qatar where he labours in deadly conditions, so that his family can live a slightly better life. According to UNDP, he just became more developed, while the standard of living his wife is exactly zero.

Argument 2

Governments redistribute wealth. This is a no brainer too. One's command over economic resources and standard of living is not equal to ones pay check. There are social programs, pensions, public infrastructure. Even if you have never earned a pay check yourself, you can take a public transport on a public road to the next public hospital. Judging by the Tax Freedom Day, states around the world redistribute 30% to 50% of all income. And while men pay most of the taxis (obviously, they have higher wages) women receive most of the subsidies (obviously, they have lover wages). But according the UNDP, women in India (female GNI 2,277) suffer in schools and hospitals of the war-torn Rwanda, while men in India (male GNI 10,633) enjoy the infrastructure and social security of the 5-times more prosperous Turkey.

Don't get me wrong, the employment gap and pay gap are not irrelevant for the standard of living and command over economic resources. Pensions and social security schemes mostly do not respect the shared family income and as a result the partner doing less paid work - usually a women - gets lower pension, unemployment benefit etc. What's worse, the non-working partner is severely disadvantaged in case of divorce or break up. But while this has an impact on each gender's standard of living it certainly does not define 100% of that value.

Argument 3

You may argue that the command over economic resources measured by estimated earned income is some kind of proxy for all other disadvantages women face in society. But do you remember what I said in the beginning?

Whether an index is manipulated or not can be judged only against a precise definition of what the index claims to be measuring.

The HDI measures "people and their capabilities" and the GDI is a ratio of these capabilities measured separately for men and women. The economic dimension of the GDI is supposed to be standard of living or command over economic resources - neither of which can be represented by earned income alone.

The taboo

Wikipedia says: "For most countries, the earned-income gap accounts for more than 90% of the gender penalty." (I have not verified this.) This is important, because when we look at the other two dimensions it becomes clear that while men have shorter and less health lives they also increasingly fall behind in mean and expected years of schooling. Without the misrepresentation of the command over economic resources value, the index would show something very uncomfortable: that according to UN's own definition of Human Development men are the less developed gender.


PS: Is there a way to give those tables some borders and padding?
31
Jump in the discussion.

No email address required.

the adjustment the school makes improves the accuracy of the official grades, but the point is that you're assuming they know the mean bias.

But, were you not arguing that it was impossible, even we knew the mean?

assuming that it was entirely due to teacher bias, and then adjusting the boys' distribution to have the same mean as the girls'.

Except that neither the hypothetical nor the GDI assumes that the difference is entirely due to the factor being controlled for. The whole point of the GDI is to try to figure out what the difference would be, were the biological effect zero. And in neither the hypothetical nor the GDI is the outcome that the male and female distribution have the same mean.

if you're going to add an arbitrary fudge factor

You keep using this term, "arbitrary," despite it clearly not being arbitrary. It is based on observations of relevant data. It might nevertheless be , or too high, or too low, or based on assumptions that are subject to dispute. But they are not arbitrary.

But, we have already discussed that. The only thing I don’t understand is why you think that it is mathematically impossible to make the adjustment.

But, were you not arguing that it was impossible, even we knew the mean?... The only thing I don’t understand is why you think that it is mathematically impossible to make the adjustment.

The only reference I made to impossible was:

It's simply impossible to separate the biological component from the gender inequity component with only observations of the sum. It's not impossible if you bring in other data, but the GDI doesn't cite any data sources in its methodology to justify the 5 years.

That's coming from a position of total ignorance about the biological component of the observations and only having access to the observed values.

Knowing something about the biological component does give you information about the gender inequity component, given their sums. If you know the biological component mean, for instance, you also know the gender inequity component mean. I'm not sure what else you get (maybe an expert in statistics can weigh in if they're reading this deep into the thread). Here, though, we don't know a priori the biological mean contribution: all we have is a vague sense that there is a biological component that favors women. It's a leap to go from that to "the average difference in life expectancy is entirely due to biological differences." If the actual biological component were 3 years as opposed to 5 years, we end up understating female privilege; the same could very well hold in the opposite direction if the actual biological difference were 7 years, as in Japan. There's just no basis to say what the actual biological difference is either way, given only the sum of the component differences.

Except that neither the hypothetical nor the GDI assumes that the difference is entirely due to the factor being controlled for.

It does, though.

And in neither the hypothetical nor the GDI is the outcome that the male and female distribution have the same mean.

On the contrary, by subtracting the observed mean difference in lifespan, by construction the GDI results in the same mean gender-specific component values. If you take the UN's data and calculate their adjusted individual health components for men and women for each country, the average for women is 0.79. And the average for men turns out to be... 0.79. This means the average "health GDI" (the ratio of the two) is 1. That is to say, men and women have apparently achieved health equity on average worldwide, if you assume that the observed average difference in lifespan is exactly the same as the average biological component to lifespan.

Calculations: https://pastebin.com/raw/Hkiejg4h

Source spread sheet: https://hdr.undp.org/sites/default/files/2021-22_HDR/HDR21-22_Statistical_Annex_GDI_Table.xlsx

(Apologies for the pastebin CSV; I would share the sheet directly but want to minimize linkage to my real life identity. You can go into Google Sheets and "Paste Special > CSV as columns" to recreate it.)

The only reference I made to impossible was

Oh, I meant to refer to your initial statement that "the only way that's mathematically possible"

If the actual biological component were 3 years as opposed to 5 years, we end up understating female privilege; the same could very well hold in the opposite direction if the actual biological difference were 7 years, as in Japan

Again, this seems to be an argument the difficulty in achieving perfect accuracy, which we have talked about before. We know the biological component is not zero, but to pretend that it is zero simply because it is impossible to know precisely what it is does not seem conducive to assessing policy outcomes.

It does, though. ... On the contrary

Sorry, I was distracted by my hypothetical, and by being a bit imprecise. In my hypothetical, there is no reason for the male and female means to be the same, because the average of a five point deduction was not derived from the underlying data. And of course you are right, because if you deduct the average difference from the higher gender, the resulting means will be the same?

But, who cares? When I said, "The whole point of the GDI is to try to figure out what the difference would be, were the biological effect zero," I meant the difference in each country. And when I said, re my hypothetical, "Are you saying that the result would not likely be a more accurate representation of the actual scores than was my original list?", I meant each score.

I think I now understand that your statistical arguments have been about global numbers, while I have been talking all along about scores within individual countries, because that is how the GDI is used: individual GDI scores are compared with individual HDI scores.