site banner

Culture War Roundup for the week of February 20, 2023

This weekly roundup thread is intended for all culture war posts. 'Culture war' is vaguely defined, but it basically means controversial issues that fall along set tribal lines. Arguments over culture war issues generate a lot of heat and little light, and few deeply entrenched people ever change their minds. This thread is for voicing opinions and analyzing the state of the discussion while trying to optimize for light over heat.

Optimistically, we think that engaging with people you disagree with is worth your time, and so is being nice! Pessimistically, there are many dynamics that can lead discussions on Culture War topics to become unproductive. There's a human tendency to divide along tribal lines, praising your ingroup and vilifying your outgroup - and if you think you find it easy to criticize your ingroup, then it may be that your outgroup is not who you think it is. Extremists with opposing positions can feed off each other, highlighting each other's worst points to justify their own angry rhetoric, which becomes in turn a new example of bad behavior for the other side to highlight.

We would like to avoid these negative dynamics. Accordingly, we ask that you do not use this thread for waging the Culture War. Examples of waging the Culture War:

  • Shaming.

  • Attempting to 'build consensus' or enforce ideological conformity.

  • Making sweeping generalizations to vilify a group you dislike.

  • Recruiting for a cause.

  • Posting links that could be summarized as 'Boo outgroup!' Basically, if your content is 'Can you believe what Those People did this week?' then you should either refrain from posting, or do some very patient work to contextualize and/or steel-man the relevant viewpoint.

In general, you should argue to understand, not to win. This thread is not territory to be claimed by one group or another; indeed, the aim is to have many different viewpoints represented here. Thus, we also ask that you follow some guidelines:

  • Speak plainly. Avoid sarcasm and mockery. When disagreeing with someone, state your objections explicitly.

  • Be as precise and charitable as you can. Don't paraphrase unflatteringly.

  • Don't imply that someone said something they did not say, even if you think it follows from what they said.

  • Write like everyone is reading and you want them to be included in the discussion.

On an ad hoc basis, the mods will try to compile a list of the best posts/comments from the previous week, posted in Quality Contribution threads and archived at /r/TheThread. You may nominate a comment for this list by clicking on 'report' at the bottom of the post and typing 'Actually a quality contribution' as the report reason.

15
Jump in the discussion.

No email address required.

How does traditional machine learning even begin to address these problems? One way would be to say, feed it the sheet music for Beethoven's Fifth, and then show it as many recordings of that piece as you can until it figures out that the music lines up with the notation. Then do that for every other piece of music that you can. This would be a pretty simple, straightforward way of doing things, but does anyone really think that you could generate reasonably accurate sheet music to a recording it hadn't heard, or would you just get some weird agglomeration of sheet music it already knows? After all, this method wouldn't give the computer any sense of what each individual component of the music actually does, just vaguely associate it with certain sounds.

Why wouldn't it? I imagine there would be issues where it gets stuff weirdly wrong like Stable Diffusion's famously mangled hands or ChatGPT's famously incompetent arithmetic, but I'd expect such a trained model to generally get the sheet music right. No idea how it would compare to a typical real trained human musician at this - my guess would be that it would be similar to how Stable Diffusion can get you images that clearly look very close to something a human artist might draw based on the prompt, just with bizarre artifacts like the aforementioned hands (and eyes, and continuous objects disappearing/getting misaligned when hidden behind stuff, and hair blending into clothes, and clothes blending into skin, and...). I think existing machine learning tools show that the upper limit of precision and accuracy of "vaguely associate it with certain sounds" is (potentially) very high.