site banner

Nate Silver: The model exactly predicted the most likely election map

natesilver.net

Key excerpt (But it's worth reading the full thing):

But the real value-add of the model is not just in calculating who’s ahead in the polling average. Rather, it’s in understanding the uncertainties in the data: how accurate polls are in practice, and how these errors are correlated between the states. The final margins on Tuesday were actually quite close to the polling averages in the swing states, though less so in blue states, as I’ll discuss in a moment. But this was more or less a textbook illustration of the normal-sized polling error that we frequently wrote about [paid only; basically says that the polling errors could be correlated be correlated between states]. When polls miss low on Trump in one key state, they probably also will in most or all of the others.

In fact, because polling errors are highly correlated between states — and because Trump was ahead in 5 of the 7 swing states anyway — a Trump sweep of the swing states was actually our most common scenario, occurring in 20 percent of simulations. Following the same logic, the second most common outcome, happening 14 percent of the time, was a Harris swing state sweep.6

[Interactive table]

Relatedly, the final Electoral College tally will be 312 electoral votes for Trump and 226 for Harris. And Trump @ 312 was by far the most common outcome in our simulations, occurring 6 percent of the time. In fact, Trump 312/Harris 226 is the huge spike you see in our electoral vote distribution chart:

[Interactive graph]

The difference between 20 percent (the share of times Trump won all 7 swing states) and 6 percent (his getting exactly 312 electoral votes) is because sometimes, Trump winning all the swing states was part of a complete landslide where he penetrated further into blue territory. Conditional on winning all 7 swing states, for instance, Trump had a 22 percent chance of also winning New Mexico, a 21 percent chance at Minnesota, 19 percent in New Hampshire, 16 percent in Maine, 11 percent in Nebraska’s 2nd Congressional District, and 10 percent in Virginia. Trump won more than 312 electoral votes in 16 percent of our simulations.

But on Tuesday, there weren’t any upsets in the other states. So not only did Trump win with exactly 312 electoral votes, he also won with the exact map that occurred most often in our simulations, counting all 50 states, the District of Columbia and the congressional districts in Nebraska and Maine.

I don't know of an intuitive test for whether a forecast of a non-repeating event was well-reasoned (see, also, the lively debate over the performance of prediction markets), but this is Silver's initial defense of his 50-50 forecast. I'm unconvinced - if the modal outcome of the model was the actual result of the election, does that vindicate its internal correlations, indict its confidence in its output, both, neither... ? But I don't think it's irreconcilable that the model's modal outcome being real vindicates its internal correlations AND that its certainty was limited by the quality of the available data, so this hasn't lowered my opinion of Silver, either.

9
Jump in the discussion.

No email address required.

Everyone on the right called it with high confidence this time, unlike 2016 and 2020. Everyone on the left seems to call it for their guy with high confidence every election, so Dem/left predictions carry no weight. Nate will maintain his (undeserved) credibility by still being more accurate than most on the left.

Everyone on the left seems to call it for their guy with high confidence every election

Plenty of right-wing figures do this too, and got resultant egg on their faces in 2018, 2020 and 2022. It's hard to quantify but there are definitely a lot of left-wing pessimists and I don't think partisan boosterism is more prevalent on one side compared to the other.

In fact on twitter there were a lot of big right wing accounts predicting a Kamala win (legitimately or otherwise) shortly before the election.

And everyone who was right was a genius and everyone who was wrong was a fool (or a fraud) apparently.

This is not how probability works.

It's incredibly lazy to say that 'everyone on the right' and 'everyone on the left' called something' to make the specious point that your opponents statements are not meaningful. You might as well be saying 'my ingroup is better and more intelligent' than the outgroup'.